Skip to main content

Advertisement

Log in

Carbon Dioxide and Methane Emissions from Mangrove-Associated Waters of the Andaman Islands, Bay of Bengal

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We estimated CO2 and CH4 emissions from mangrove-associated waters of the Andaman Islands by sampling hourly over 24 h in two tidal mangrove creeks (Wright Myo; Kalighat) and during transects in contiguous shallow inshore waters, immediately following the northeast monsoons (dry season) and during the peak of the southwest monsoons (wet season) of 2005 and 2006. Tidal height correlated positively with dissolved O2 and negatively with pCO2, CH4, total alkalinity (TAlk) and dissolved inorganic carbon (DIC), and pCO2 and CH4 were always highly supersaturated (330–1,627 % CO2; 339–26,930 % CH4). These data are consistent with a tidal pumping response to hydrostatic pressure change. There were no seasonal trends in dissolved CH4 but pCO2 was around twice as high during the 2005 wet season than at other times, in both the tidal surveys and the inshore transects. Fourfold higher turbidity during the wet season is consistent with elevated net benthic and/or water column heterotrophy via enhanced organic matter inputs from adjacent mangrove forest and/or the flushing of CO2-enriched soil waters, which may explain these CO2 data. TAlk/DIC relationships in the tidally pumped waters were most consistent with a diagenetic origin of CO2 primarily via sulphate reduction, with additional inputs via aerobic respiration. A decrease with salinity for pCO2, CH4, TAlk and DIC during the inshore transects reflected offshore transport of tidally pumped waters. Estimated mean tidal creek emissions were ∼23–173 mmol m−2 day−1 CO2 and ∼0.11–0.47 mmol m−2 day−1 CH4. The CO2 emissions are typical of mangrove-associated waters globally, while the CH4 emissions fall at the low end of the published range. Scaling to the creek open water area (2,700 km2) gave total annual creek water emissions ∼3.6–9.2 × 1010 mol CO2 and 3.7–34 × 107 mol CH4. We estimated emissions from contiguous inshore waters at ∼1.5 × 1011 mol CO2 year−1 and 2.6 × 108 mol CH4 year−1, giving total emissions of ∼1.9 × 1011 mol CO2 year−1 and ∼3.0 × 108 mol CH4 year−1 from a total area of mangrove-influenced water of ∼3 × 104 km2. Evaluating such emissions in a range of mangrove environments is important to resolving the greenhouse gas balance of mangrove ecosystems globally. Future such studies should be integral to wider quantitative process studies of the mangrove carbon balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alongi, D.M. 2002. Present state and future of the world’s mangrove forests. Environmental Conservation 29: 331–349.

    Article  Google Scholar 

  • Alongi, D.M., A. Sasekumar, F. Tirendi, and P. Dixon. 1998. The influence of stand age on benthic decomposition and recycling of organic matter in managed mangrove forests of Malaysia. Journal of Experimental Marine Biology and Ecology 225: 197–218.

    Article  Google Scholar 

  • Alongi, D.M., F. Tirendi, L.A. Trott, and X.X. Xuan. 2000. Benthic decomposition rates and pathways in plantations of the mangrove, Rhizophora apiculata, in the Mekong delta, Vietnam. Marine Ecology Progress Series 194: 87–101.

    Article  Google Scholar 

  • Alongi, D.M., G. Wattayakorn, J. Pfitzner, F. Tirendi, I. Zagorskis, G.J. Brunskill, et al. 2001. Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand. Marine Geology 179: 85–103.

    Article  CAS  Google Scholar 

  • Alongi, D.M., J. Pfitzner, L.A. Trott, P. Dixon, and D.W. Klumpp. 2005. Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang estuary, China. Estuarine, Coastal and Shelf Science 63: 605–618.

    Article  CAS  Google Scholar 

  • Amorocho, J., and J.J. DeVries. 1980. A new evaluation of the wind stress coefficient over water surfaces. Journal of Geophysical Research 85: 433–442.

    Article  Google Scholar 

  • Bange, H.W. 2006. Nitrous oxide and methane in European coastal waters. Estuarine, Coastal and Shelf Science 70: 361–374.

    Article  CAS  Google Scholar 

  • Barnes, J., R. Ramesh, R. Purvaja, A. Nirmal Rajkumar, B. Senthil Kumar, K. Krithika, et al. 2006. Tidal dynamics and rainfall control N2O and CH4 emissions from a pristine mangrove creek. Geophysical Research Letters 33, L15405. doi:10.1029/2006GL026829.

    Article  Google Scholar 

  • Berner, R.A., 1980. Early Diagenesis: a Theoretical Approach. Princeton: Princeton University Press

  • Biswas, H., S.K. Mukhopadhyay, and T.K. De. 2004. Biogenic controls on the air-water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of Bay of Bengal, India. Limnology and Oceanography 49: 95–101.

    Article  CAS  Google Scholar 

  • Biswas, H., S.K. Mukhopadhyay, S. Sen, and T.K. Jana. 2007. Spatial and temporal patterns of methane dynamics in the tropical mangrove dominated estuary, NE coast of Bay of Bengal, India. Journal of Marine Systems 10: 1–8.

    Google Scholar 

  • Borges, A.V., S. Djenidi, G. Lacroix, J. Théate, B. Delille, and M. Frankignoulle. 2003. Atmospheric CO2 flux from mangrove surrounding waters. Geophysical Research Letters 30: 1558. doi:10.1029/2003GL017143.

    Article  Google Scholar 

  • Borges, A.V., J.P. Vanderborght, L.-S. Schiettecatte, F. Gazeau, S. Ferrón, B. Delille, et al. 2004. Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries 27: 593–603.

    Article  CAS  Google Scholar 

  • Borges, A.V., B. Delille, and M. Frankignoulle. 2005. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophysical Research Letters 32: 1–5.

    Article  Google Scholar 

  • Bouillon, S., and H.T.S. Boschker. 2006. Bacterial carbon sources in coastal sediments: a cross-system analysis based on stable isotope data of biomarkers. Biogeosciences 3: 175–185.

    Article  CAS  Google Scholar 

  • Bouillon, S., M. Frankignoulle, F. Dehairs, B. Velimirov, A. Eiler, G. Abril, et al. 2003. Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre-monsoon: The local impact of extensive mangrove forests. Global Biogeochemical Cycles 17: 1114. doi:10.1029/2002GB002026.

    Article  Google Scholar 

  • Bouillon, S., F. Dehairs, L.-S. Schiettecatte, and A.V. Borges. 2007a. Biogeochemistry of the Tana estuary and delta (northern Kenya). Limnology and Oceanography 52: 45–59.

    Article  Google Scholar 

  • Bouillon, S., F. Dehairs, B. Velimirov, G. Abril, and A.V. Borges. 2007b. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi bay, Kenya). Journal of Geophysical Research-Biogeosciences 112, G02018. doi:10.1029/2006JG000325.

    Article  Google Scholar 

  • Bouillon, S., J.J. Middelburg, F. Dehairs, A.V. Borges, G. Abril, M.R. Flindt, et al. 2007c. Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania). Biogeosciences 4: 311–322.

    Article  CAS  Google Scholar 

  • Bouillon, S., A.V. Borges, E. Castañeda-Moya, K. Diele, T. Dittmar, N.C. Duke, et al. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles 22, GB2013. doi:10.1029/2007gb003052.

    Article  Google Scholar 

  • Casper, P., S.C. Maberly, G.H. Hall, and B.J. Finlay. 2000. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49: 1–19.

    Article  CAS  Google Scholar 

  • Chen, C.T.A., and A.V. Borges. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research II 56: 578–590.

    Article  CAS  Google Scholar 

  • Clark, J.F., P. Schlosser, R. Wanninkhof, H.J. Simpson, W.S.F. Schuster, and D.T. Ho. 1995. Gas transfer velocities for SF6 and 3He in a small pond at low wind speeds. Geophysical Research Letters 22: 93–96.

    Article  CAS  Google Scholar 

  • Dagar, J.C., A.D. Mongia, and N.T. Singh. 1995. Degradation of tropical rain forest soils upon replacement with plantations and arable crops in Andaman and Nicobar Islands in India. Tropical Ecology 36: 89–101.

    Google Scholar 

  • Dittmar, T., N. Hertkorn, G. Kattner, and R.J. Lara. 2006. Mangroves, a major source of dissolved organic carbon to the oceans. Global Biogeochemical Cycles 20(1), GB101210. doi:10.1029/2005GB002570.

    Article  Google Scholar 

  • Forest Survey of India. 2005. State of Forest Report, Ministry of Environment and Forests. India: Dehradun.

    Google Scholar 

  • Frankignoulle, M., and A.V. Borges. 2001. Direct and indirect pCO2 measurements in a wide range of pCO2 and salinity values (the Scheldt estuary). Aquatic Geochemistry 7: 267–273.

    Article  CAS  Google Scholar 

  • Gattuso, J.P., M. Frankignoulle, and R. Wollast. 1998. Carbon and Carbonate Metabolism In Coastal Ecosystems. Annual Reviews of Ecological Systems 29: 405–434.

    Article  Google Scholar 

  • Ghosh, S., T.K. Jana, B.N. Singh, and A. Choudhury. 1987. Comparative study of carbon dioxide system in virgin and reclaimed mangrove waters of Sundarbans during freshet. Mahasagar Bulletin, National Institute of Oceanography 20: 155–161.

    CAS  Google Scholar 

  • Giri, C., E. Ochieng, L.L. Tieszen, Z. Zhu, A. Singh, T. Loveland, et al. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20: 154–159.

    Article  Google Scholar 

  • Gran, G. 1952. Determination of the equivalence point in potentiometric titrations- Part II. Analyst 77: 661–671.

    Article  CAS  Google Scholar 

  • Harriss, R.C., E. Gorham, D.I. Sebacher, K.B. Bartlett, and P.A. Flebbe. 1998. Methane flux from northern peatlands. Nature 315: 652–654.

    Article  Google Scholar 

  • Jennerjahn, T.C., and V. Ittekot. 2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89: 23–30.

    Article  Google Scholar 

  • Koné, Y.J.M., and A.V. Borges. 2008. Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau Province (Vietnam). Estuarine, Coastal and Shelf Science 77: 409–421.

    Article  Google Scholar 

  • Kreuzwieser, J., J. Buchholz, and H. Rennenberg. 2003. Emission of methane and nitrous oxide by Australian mangrove ecosystems. Plant Biology 5: 423–431.

    Article  CAS  Google Scholar 

  • Kristensen, E., F.Ø. Andersen, N. Holmboe, M. Holmer, and N. Thongtham. 2000. Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand. Aquatic Microbial Ecology 22: 199–213.

    Article  Google Scholar 

  • Kristensen, E., M.R. Flindt, S. Ulomi, A.V. Borges, G. Abril, and S. Bouillon. 2008. Emission of CO2 and CH4 to the atmosphere by sediments and open waters in two Tanzanian mangrove forests. Marine Ecology Progress Series 370: 53–67.

    Article  CAS  Google Scholar 

  • Krumins, V., M. Gehlen, S. Arndt, P. van Cappellen, and P. Regnier. 2013. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change. Biogeosciences 10: 371–398. doi:10.5194/bg-10-371-2013.

    Article  Google Scholar 

  • Lara, R.J., and T. Dittmar. 1999. Nutrient dynamics in a mangrove creek (North Brazil) during the dry season. Mangroves and Salt Marshes 3: 185–195.

    Article  Google Scholar 

  • Lekphet, S., S. Nitisoravut, and S. Adsavakulchai. 2005. Estimating methane emissions from mangrove area in Ranong Province, Thailand. Songklanakarin Journal of Science and Technology 27: 153–163.

    CAS  Google Scholar 

  • Liss, P.S., and L. Merlivat. 1986. Air-sea gas exchange rates: Introduction and synthesis. In The Role of Air-Sea Exchange in Geochemical Cycling, ed. P. Buat-Menard. New York: Springer.

    Google Scholar 

  • Maher, D., I.R. Santos, J. Gleeson, L. Golsby-Smith, and B.D. Eyre. 2013. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing mangrove carbon sink? Limnology and Oceanography 58: 475–488.

    CAS  Google Scholar 

  • Marani, L., Alvala., P. C., 2007. Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmospheric Environment 41,1627–1633

    Google Scholar 

  • Millero, F.J., W.T. Hiscock, W.T., Huang, F., Roche, M., Zhang, J.Z., 2001. Seasonal variation of the carbonate system in Florida Bay. Bulletin of Marine Science, 68, 101–123

  • Millero, F.J., T.B. Graham, F. Huang, H. Bustos-Serrano, and D. Pierrot. 2006. Dissociation constants of carbonic acid in sea water as a function of salinity and temperature. Marine Chemistry 100: 80–94.

    Article  CAS  Google Scholar 

  • Muller-Karger, F. E., Varela, R., Thunell, R,. Luerssen,R., Hu, C., Walsh, J. J., 2005. The importance of continental margins in the global carbon cycle. Geophysical Research Letters 32, L01602, doi:10.1029/2004GL021346, 2005.

  • Ovalle, A.R.C., C.E. Rezende, L.D. Lacerda, and C.A.R. Silva. 1990. Factors affecting the hydrochemistry of a mangrove tidal creek, Sepetiba Bay, Brazil. Estuarine, Coastal and Shelf Science 31: 639–650.

    Article  CAS  Google Scholar 

  • Pierrot D., Lewis E., Wallace, D. W. R., 2006. MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.

  • Purvaja, R., and R. Ramesh. 2001. Natural and anthropogenic methane emission from coastal wetlands of south India. Environmental Management 27: 547–557.

    Article  CAS  Google Scholar 

  • Purvaja, R., R. Ramesh, and P. Frenzel. 2004. Plant-mediated methane emission from an Indian mangrove. Global Change Biology 10: 1–10.

    Article  Google Scholar 

  • Rajkumar, A.N., J. Barnes, R. Ramesh, R. Purvaja, and R.C. Upstill-Goddard. 2008. Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Marine Pollution Bulletin 56: 2043–2051.

    Article  Google Scholar 

  • Ramesh, R., R. Purvaja, V. Neetha, J. Divia, J. Barnes, and R.C. Upstill-Goddard. 2007. CO2 and CH4 emissions from Indian mangroves and its surrounding waters. In Greenhouse Gas and Carbon Balances in Mangrove Coastal Ecosystems, ed. Y. Tateda, R.C. Upstill-Goddard, T. Goreau, D. Alongi, A. Nose, E. Kristensen, and G. Wattayakorn. Kanagawa, Japan: Gendai Tosho.

    Google Scholar 

  • Santos, I.R., D. Maher, and B.D. Eyre. 2012. Coupling automated radon and carbon dioxide measurements in coastal waters. Environmental Science and Technology 46: 7685–7691.

    Article  CAS  Google Scholar 

  • Sarma, V.V.S.S., and P.V. Narvikar. 2001. A study on inorganic carbon components in the Andaman Sea during the post monsoon season. Oceanologica Acta 24: 125–134.

    Google Scholar 

  • Selvam, V. 2003. Environmental classification of mangrove wetlands of India. Current Science 84: 759–765.

    Google Scholar 

  • Shalini, A., R. Ramesh, R. Purvaja, P. Frenzel, and J. Barnes. 2006. Spatial and temporal distribution of methane in an extensive shallow estuary, South India. Journal of Earth System Science 115: 451–460.

    Article  Google Scholar 

  • Singh, V. P., Garge, A., Pathak, S. M., Mall, L. P., 1986. Mangrove forests of Andaman Islands in relation to human interference. Environmental Conservation. 13, 169172 doi:10.1017/S0376892900036821

  • Singh, V.P., A. Garge, S.M. Pathak, and L.P. Mall. 1987. Pattern and process in mangrove forests of the Andaman Islands. Vegetatio 71: 185–188.

    Google Scholar 

  • Upstill-Goddard, R.C. 2006. Air-sea gas exchange in the coastal zone. Estuarine, Coastal and Shelf Science 70: 388–404.

    Article  CAS  Google Scholar 

  • Upstill-Goddard, R.C., A.P. Rees, and N.J.P. Owens. 1996. Simultaneous high-precision measurements of methane and nitrous oxide in water and seawater by single-phase equilibration gas chromatography. Deep-Sea Research 43: 1669–1682.

    Article  Google Scholar 

  • Upstill-Goddard, R.C., J. Barnes, and R. Ramesh. 2007. Are mangroves a source or a sink for greenhouse gases? In Greenhouse Gas and Carbon Balances in Mangrove Coastal Ecosystems, ed. Y. Tateda, R.C. Upstill-Goddard, T. Goreau, D. Alongi, A. Nose, E. Kristensen, and G. Wattayakorn. Kanagawa, Japan: Gendai Tosho.

    Google Scholar 

  • Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97: 7373–7382.

    Article  Google Scholar 

  • Weiss, R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas Marine Chemistry 2: 203–215.

    CAS  Google Scholar 

  • Wiesenburg, D.A., and N.L. Guinasso. 1979. Equilibrium solubilities of methane, carbon monoxide and hydrogen in water and seawater. Journal of Chemical Engineering Data 24: 354–360.

    Article  Google Scholar 

  • Wollast, R. 1998. Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. In The Sea, 10th ed, ed. K.H. Brink and A.R. Robinson. New York: John Wiley and Sons.

    Google Scholar 

  • Zablocki, J.A., A.J. Andersson, and N.R. Bates. 2011. Diel aquatic CO2 system dynamics of a Bermudian mangrove environment. Aquatic Geochemistry 17: 841–859. doi:10.1007/s10498-011-9142-3.

    Article  CAS  Google Scholar 

  • Zhai, W.D., M.H. Dai, W.J. Cai, Y.C. Wang, and Z.H. Wang. 2005. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Mar + ine. Chemistry 93: 21–32.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank their colleagues at the Institute of Ocean Management (IOM) at Anna University and the School of Marine Science and Technology at Newcastle University for their assistance and support. The authors specifically thank The Leverhulme Trust (http://www.leverhulme.ac.uk/) for their financial support through Research Grant F/00 125/R and the Council of Scientific and Industrial Research (CSIR) University Grants Commission (UGC), Government of India, for facilitating a Junior Research Fellowship (PhD) in support of Neetha V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Upstill-Goddard.

Additional information

Communicated by Alberto Vieira Borges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linto, N., Barnes, J., Ramachandran, R. et al. Carbon Dioxide and Methane Emissions from Mangrove-Associated Waters of the Andaman Islands, Bay of Bengal. Estuaries and Coasts 37, 381–398 (2014). https://doi.org/10.1007/s12237-013-9674-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9674-4

Keywords

Navigation